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With the aim of obtaining a monitoring tool to assess the quality of water, a
multivariate statistical procedure based on cluster analysis (CA) coupled with soft
independent modelling class analogy (SIMCA) algorithm, providing an effective
classification method, is proposed. The experimental data set, carried out
throughout the year 2004, was composed of analytical parameters from 68 water
sources in a vast southwest area of Paris. Nine variables carrying the most useful
information were selected and investigated (nitrate, sulphate, chloride, turbidity,
conductivity, hardness, alkalinity, coliforms and Escherichia coli). Principal
component analysis provided considerable data reduction, gathering in the first
two principal components the majority of information representing about 92.2%
of the total variance. CA grouped samples belonging to different sites, distinctly
correlating them with chemical variables, and a classification model was built by
SIMCA. This model was optimised and validated and then applied to a new data
matrix, consisting of the parameters measured during the year 2005 from the same
objects, providing a fast and accurate classification of all the samples. The most of
the examined sources appeared unchanged during the 2-year period, but five
sources resulted distributed in different classes, due to statistical significant
changes of some characteristic analytical parameters.

Keywords: water quality; multivariate analysis; PCA; clustering; SIMCA

1. Introduction

In the recent years, the interest in quality control of water for human use has increased
considerably. An effective socioeconomic development of the communities depends much
on the sustainability of the available water resources. Water of adequate quantity and
quality is required to meet growing household, industrial and agricultural needs. It is
largely influenced and determined by the natural processes and anthropogenic activities in
the region. The excessive use of toxics in industry or the chemical fertilisers in agriculture
can adversely affect the suitability of water resources.

The recent trends in environmental protection indicate that, in the immediate future,
the treatment rules and the controls about water are tending to increase. Furthermore, the
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ability to monitor parameters containing critical information on the analysis or treatment
of water is very important for research and development.

One of the best approaches to this control is provided by use of multivariate analysis
on the fundamental physical, chemical and biological properties of water. The main aim is
to provide information useful for a fast and impartial water control management. The
modern analytical techniques provide an enormous amount of data, which, if processed
using descriptive univariate methods, is of little value for a decision-making process [1–2].
In contrast, multivariate procedures have been proven suitable for environmental quality
assessment [3–6] and for pollution studies [7], offering great possibilities for management
purposes in terms of aiding the decision makers [8]. The principal advantage of the
multivariate techniques consists of the possibility to analyse a very high number of data
from the investigated system, combining them to build a multivariate model. This model is
then able to predict new unknown samples [9–12]. Grouping of data (objects) can be made
by unsupervised methods which identify the natural clustering pattern and group objects
on the basis of similarities between the samples. The most common methods of
unsupervised pattern recognition are cluster analysis (CA) and classification methods,
widely recognised as very powerful tools for getting better information about relations
within data set. Application of these chemometric techniques offers a reliable and better
understanding of the hydrochemistry and hydro-chemical processes in the study region.

In particular, classification methods are able to build a mathematic model to
individualise the affiliation class of a new object, by using a limited number of independent
variables (descriptors). The original data matrix is combined in a new matrix, named
distance matrix. Classification of new objects provides to establish the better relationship
between the variables describing the examined object and the class giving the best
quantitative response. In the present article, a rapid and accurate methodological
procedure based on CA and soft independent modelling class analogy (SIMCA)
classification has been applied to the parameter data obtained from a high number of
water sources in Paris and its neighbouring south region. Principal component analysis
(PCA) provided to select the variables giving the optimal information [13–15]. SIMCA was
used to perform the classification, providing to group the studied objects according to the
similarity concept. The built model was tested to classify the same sources in the following
year [16–19].

The objective of this study is the development of a methodology, based on advanced
chemometric techniques, that makes it possible to assess and predict quality of the water to
be used in a densely populated city. Multivariate techniques also permit identification of
the possible analytical parameters or sources that influence the water systems and are
responsible for the variations in water quality, which thus offers a valuable tool for
developing appropriate strategies for effective management of the water resources. Since a
continued and reliable monitoring of potable water is necessary to guarantee the health of
people, the proposed method seems reliable to assess the water quality in the routine
decision-making process.

2. Experimental

2.1 Study area

The study area is confined to a vast expand of land in the south of Paris, named Ile de
France. Figure 1 shows the map of south Paris territory, expanded on a surface of
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nearly 27.75 km2, in which the collecting points of the studied samples are localised.

Water arises from the basins of Vanne (Sens), Loing, Lunain and Voulzie (Provins).
The basin of Voulzie is then divided into the three areas of Voulzie, Durteint and

Dragon. The water has two origins: a 60% part derives from underground waters and

the other part from superficial waters produced by the alluvial layers of rivers Seine
and Yonne. The underground layers in which the water flows have a calcareous

composition, showing a strong permeability due to a net of fissures. The flow speed of

the water ranges from 100mh�1 in the region of Voulzie to 400mh�1 in the region of
Vanne.

All the caught water is carried to Paris by means of an aqueduct system 600 km long

and then carried to the depuration stations of Ivry, Orly on Seine and Joinville on Marna,
where it is subjected to a slow filtration process, comparable to a natural soil filtration.

After this treatment, the water is carried to five reservoirs from which it is distributed to

the consumers.

2.2 Sampling and methods of analysis

The study was performed by using the data collected from 68 water sources. The

investigation period was worked out along a 2-year period, 2004 and 2005. Analyses were
performed every month for the year 2004 and mean data were used to build the

Figure 1. Study area showing monitoring network on the south region of Paris.
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calibration set. A SIMCA classification model, defined by using the calibration set, was
applied on a new data set (prediction set), measured on the same sources but carried out
every 3months during the year 2005.

All the samples were stored at 4�C until analysis. For each sample, 90 parameters
including chemical, physical and microbiological ones, were carried out. Determination of
pH, temperature, nitrite and ammonium was performed in situ. The other analyses were
performed within 48 h after sampling. Analytical parameters were determined in triplicate
with reference to official methods currently suggested [20].

2.3 Chemometric software

Application of the multivariate statistical algorithms has been supported by the
software package The Unscrambler 9.7� (Camo Process As., Oslo, Norway). The
software elaborates multivariate analysis and experimental design and is equipped
with several methods, including CA, PCA, regression methods, SIMCA and
PLS-DA. It also allows to optimise the calibration models and to develop validation
procedures [21].

2.4 Calibration set

Water samples were collected during the year 2004 with a monthly frequency of
sampling. Total of 68 water sources in the area of south Paris were examined. For each
sample 90 analytical parameters (variables) were carried out, including chemical,
physical and microbiological parameters. A wide set of data consisting of 73.440 values
was collected (12 samples per station� 68 points� 90 parameters). The first selection of
variables carrying the largest most useful information from the system was performed.
This selection represents a critical step which should be carefully considered, because
excluding important variables may lead to misleading results in building a classification
model. The amount of relevant information does not necessarily increase when a higher
number of variables is included. In contrast, it could increase random noise. The value
of variance was adopted as a discriminating criterion to select the parameters, and
those showing a value of relative standard deviation (RSD) under 10% were discarded.
Anions seemed to play an important role in characterising the samples. In contrast, no
cations showed significant variance. The selected parameters included six chemical
parameters: conductivity (COND), alkalinity (AKM), chloride (Cl), sulphate (SO4),
nitrate (NO3) and hardness (HRD); two microbiological parameters: Escherichia
coli (ECOLI) and Streptococcus faecalis (STRF); one physical-chemical parameter:
turbidity (TUR).

Most of the discarded parameters always showed a value under the detectable limit.
Some of the selected parameters, as NO3 or AKM can rise from the organic matter decay.
External factors such as the temperature or the presence of other ions can play an
important role in the decay process. Anthropogenic forces, as a massive use of toxics in
industry or the chemical fertilisers in agriculture have the tendency to accelerate natural
processes that affect water quality.

Table 1 lists the water sources used for the present investigation, the means of the
selected parameters (12 measurements in 2004) and the SD values. The selected parameters
were then normalised dividing them by SD for further elaboration.
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3. Multivariate analysis

3.1 Cluster analysis

Cluster analysis represents a series of multivariate methods which provide means for

classifying a given population into groups (clusters), based on similarity or closeness

measures. The objective principle of the distance is adopted for this aim. The

agglomerative hierarchical clustering is nowadays the most cited method in literature

[22], providing intuitive similarity relationships between any sample and the entire

data set. The sample grouping is illustrated by a dendrogram that allows a global

vision of the similarity between the objects. In this work, the hierarchic agglomerative

cluster algorithm applied was the Weighted Average Linkage whereas the distance

elaboration was performed using squared Euclidean distance as a measure of

similarity.

Weighted average linkage skf ¼ 0:5ðsks þ sktÞ

where skf is the similarity of a new cluster, sks and skt represent the similarity of the starting

cluster building the new cluster [23–25].

3.2 Principal component analysis

When an analytical system presents a high number of variables, the application of the

chemometric techniques helps to have a global vision of the system, in such a way to

appreciate the analytical weight of each variable and to single out possible relationships

between the variables.
Principal component analysis is one of the most important data reduction method

for a multivariate data set characterised by measurements on multiple variables. It

reduces the significant dimensionality of a data matrix, allowing to retain most of the

original information content. The original variables (X) are transformed by linear

combination in a limited number of new variables, called principal components

(PCs) [26]:

X ¼ t1p
0
1 þ t2p

0
2 þ � � � þ tAp

0
A þ E

where t are score values, p are loading values and E is the residual matrix.
The main aim of PCA is to explain as much as possible the total sum of square of the

data matrix with a minimal number of PCs. The scores and loadings will be used to define

the object classes. The number of PCs to be used is very important to increase robustness

of the multivariate model. Including more PCs not necessarily increases the amount of

relevant information and it could, on the contrary, increase noise [27].
In this work, PCA has been used to study the features of the defined classes and to

enable the SIMCA classification.

3.3 Soft independent modelling of class analogy

Soft independent modelling class analogy is a chemometric technique in which new objects

are classified with respect to their analogy with objects belonging to a class defined by

PCA [19]. SIMCA has been reported to produce very high correct classification rate in the

separation of very similar materials [28].
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Each class is defined through a critical distance scrit, which is a function of the distance

of all the objects (training set) from the PCA model (calculated as SD of residuals s0) and

from F-test, measured in a confidence range of 95–99% [29].

scrit ¼ ðFs
2
0Þ

1=2

New samples are handled separately by each class model and its belonging is made on

the basis of the distance to the class. If the distance of a new object is below the critical

distance (sk5scrit) it will be considered part of that class. On the contrary, if this distance

results to be higher, the object must be considered as an outlier.

4. Results and discussion

With the aim to define the calibration set, a selection process of the variables carrying

good information was performed. The variables, carried out during the year 2004,

showing a value of variance (expressed as RSD%) above 10% were selected, as above

described. The mean values of the selected parameters are summarised in Table 1.

The analytical parameters describing the water samples were chemical, chemical-

physical or microbiological ones, presenting different units of measurements.

A normalisation process then appeared necessary to obtain comparable data. The

normalisation was applied to the analytical raw data, dividing the variables by SD

[30–31], afterwards the data were centred and scaled before they were used in CA

and PCA.

4.1 Cluster analysis

Cluster analysis was performed by using the data of the calibration set and then applying

the weighted average linkage procedure. Results were reported in the form of dendrogram,

depicted in Figure 2. On the basis of the connecting distances and in agreement with the

PCA results, three distinctive clusters were defined.
Table 2 summarises for each cluster the mean values of the analytical

parameters and the corresponding values of SD. The graphic in Figure 3 shows

the percentage of the parameter means within a single cluster with respect to the

mean values of all the clusters. The chemical parameters NO3, SO4 and Cl showed

a high variation, providing very useful information to clustering. The microbio-

logical parameters, ECOLI and STRF, also showed to be responsible for the

cluster distribution.
The first group contained seven objects and was assorted with samples collected in a

geographical area equipped with water softener systems. These sources came from the

southeast region of the studied area, close to the town of Sens. The samples in this cluster

were characterised by a relatively high bacterial content and a very low concentration of

SO4. The second cluster was formed by 18 samples, all localised in the territory around

Provins, in the northern zone of the studied area. The most characterising parameters were

found to be Cl and NO3 which were almost twice the mean values. The last cluster was

formed by the highest number of objects, 43, all characterised by very low levels of ECOLI

and STRF. These sources were localised in a wide area including the regions of

Fontainebleau and Sens.
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Figure 2. Dendrogram of the water sources by cluster analysis based on average linkage and
euclidean distance.

Table 2. Statistical parameters of the clusters.

Cluster ECOLI STRF TUR COND AKM Cl SO4 NO3 HRD

1 Mean 9.1 2.7 0.4 519.7 21.6 10.0 5.3 22.4 24.3
SD 4.6 2.6 0.1 17.8 0.5 0.6 1.0 3.4 0.6

2 Mean 1.6 1.7 0.2 762.9 25.6 32.9 24.3 60.1 35.4
SD 2.0 1.5 0.1 40.4 1.4 3.7 3.2 5.5 1.7

3 Mean 0.2 0.1 0.2 571.1 21.8 18.5 19.0 28.9 26.6
SD 0.6 0.3 0.1 45.8 1.6 5.8 9.3 14.9 2.3
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4.2 PCA-modelling

Modelling procedure in SIMCA classification is articulated in a two-step process. The first

step is based on a disjoint PCA-modelling, called training stage, where a model for each

data class is built. In the second step, named classification stage, new objects are assigned

to the defined class models.
In the training stage, PCA provided to extract and visualise the main information from

the calibration data set in such a way as to examine qualitative differences between the

three defined clusters. Figure 4 shows the PC1/PC2 score plot, especially useful because

these two PCs summarised more variation in the data than any other pair of PCs. The first

two components accounted for 92.2% of the variance of the data. The three classes
resulted in perfectly separated, with positive scores on the second PC for the first class of

samples and negative scores for the second one; in contrast, the third class presented

positive values for the first PC and negative values for the second PC.
Bi-plot of the score and loading values (Figure 5) shows the most influential variables

for each class. The third class resulted to have values close to the average for every
variable. On the contrary, the parameters ECOLI, STRF, TUR in the first group or

AKM, COND, HRD, NO3, Cl in the second group were characterised by higher values.

4.3 SIMCA classification

Since in SIMCA technique each class is described by a PCA-model, three independent

models were built. The obtained models were validated with full-cross validation

approach. An optimal number of PCs was chosen for each model because the classes

exhibited different shapes and structures (Table 3). All the objects were assigned to a single

class according to a critical distance from the model at a given level of significance (5%).
In the classification stage, SIMCA was applied to the prediction data set, consisting of

the measures collected in the year 2005 from the analysis of the same sources in the

Figure 3. Variation of the selected parameters among the defined clusters.

International Journal of Environmental Analytical Chemistry 1097

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
5
 
1
7
 
J
a
n
u
a
r
y
 
2
0
1
1



Figure 5. Bi-plot PC1 vs. PC2.

Figure 4. Score plot PC1 vs. PC2.
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calibration set. Whatever variation in the water characteristics could be so easily
highlighted [32]. The same analytical variables selected for the calibration process were
herein used.

The results of SIMCA classification are summarised in Table 4 and displayed
graphically in Figures 6 and 7. In particular, Figure 6 shows the plots ‘Distance versus
Leverage’ for all the classes, where the axes represent the distance of each sample from a
specific class and Leverage is the distance of a single observation from the model centre.
Leverage is very useful to identify outlying observations. If a sample presents a distance to
the centroid greater than the critical distance, it is considered as an outlier and, as a
consequence, rejected from the corresponding class model.

Table 4. SIMCA classification of the studied objects in the years 2004 and 2005.

Class Class

Sources 2004 2005 Sources 2004 2005

ARMENTIERE 1 0 RIVIEREFOR 2 2
AUGE 1 2 2 SEL 3 3
AUGE 2 2 2 STMARCOUF 3 3
AUGEOIECAP 1 3 STPHILDRA 3 3
BASSIN 2 2 STPHILSOU 1 3
BIGNONS 3 3 STTHOMAS 3 3
BOUILLARDE 3 1 STTHOMASFO 3 3
BOURRON 3 3 TETE 2 2
BOURRONF 38 3 3 VICOMTE 2 2
BROCARD 2 2 VIEUXMOULI 2 2
CERILLY 3 3 VILLEPERRO 3 3
CHAINTREAU 3 3 VALS DE SEIN 1 3 3
COCHEPIES 1 1 VALS DE SEIN 10 3 3
COIGNET 3 3 VALS DE SEIN 12 3 3
COIGNETFOR 3 3 VALS DE SEIN 13 3 3
DRAINFONT 2 2 VALS DE SEIN 14 3 3
FLACY 3 3 VALS DE SEIN 15 3 3
FONTAINES 2 2 VALS DE SEIN 16 3 3
FONTSTENUS 2 2 VALS DE SEIN 17 3 3
GAUDIN 3 3 VALS DE SEIN 18 3 3
GAUTHIERES 2 2 VALS DE SEIN 19 3 3
GLATIGNYS 2 2 VALS DE SEIN 20 3 3
GROUPEA 2 2 VALS DE SEIN 21 3 3
GROUPEC 2 2 VALS DE SEIN 3 3 3
JOYE 3 3 VALS DE SEIN 4 3 3
MALHORTIES 1 1 VALS DE SEIN 7 3 3
MAROY 3 3 VALS DE SEIN 8 3 3
MAROYDRLAT 3 3 VALS D’YONNE 2 3 3
MIROIR 1 0 VALS D’YONNE 3 3 3
NEUFS1 2 2 VALS D’YONNE 4 3 3
NEUFS2 2 2 VALS D’YONNE 5 3 3
NOE 1 1 VALS D’YONNE 6 3 3
PATURES 3 3 VALS D’YONNE 7 3 3
PIGEONS 2 2 VALS D’YONNE 8 3 3

Sources changing class are reported in bold; sources excluded from the defined classes (outliers) are
assigned to class 0.
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Figure 6. Distance vs. Leverage plots for class 1(a), class 2(b) and class 3(c).
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The graph of Figure 7 displays for each class the discriminant power of the SIMCA
model, showing the main responsible variables for the object distribution in the different
classes. The parameters Cl, ECOLI and COND resulted clearly to be key parameters in
allocating the water samples within the classes. The same parameters had resulted already
in the previous CA, demonstrating they carry very useful analytical information.

Figure 8 shows the class distribution in the studied area. The first group comprised a
good number of surface water sources with a collecting system devoid of water softeners
[33]. This could explain the high presence of bacteria, almost 10 times higher than the
samples within the other two classes. The second class composed by a series of sources
scattered along a large region under cultivation. This class was characterised by
considerable values of inorganic analytes. In particular, the high content of nitrate and
chloride measured during the studied period, could be right justified by the use of
nitrogenous fertilisers and chlorine-pesticides, which are the most common sources
of nitrate and chloride ions in groundwater systems. The third class lists a large series of
sources in a wide region in the neighbourhood area of Fontainebleau and along the Seine
river. This area consists of heterogeneous areas, as it presents both urban and industrial
areas encircled by woodlands and meadows. The collecting water system is supplied with
water softeners [33] that explains the very low levels of ECOLI and STRF. This study
demonstrated that the most of the tested water sources had kept the same analytical
profile during the 2-year period investigated, without any shift through the classes.

Figure 7. Discriminant power of the SIMCA model with respect to the studied variables.
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Whatever variation of the analytical parameters occurred, it resulted not statistically
significant so that water quality could be considered unmodified. Only five sources
resulted shifting to a different class because of a significant variation of some analytical
parameters.

The distribution within the classes in both the investigated years and the relative mean
values of the used parameters are listed in Tables 4 and 5, respectively. It is plain that
the class change for the sources Bouillarde (third-to-first), Stphilsou and Augeoicap (first-
to-third) was caused by the considerable variation of ECOLI and STRF. Analogously, the
high increase of both microbiological parameters caused a significant increase of distance
from all the class models for the sources Armentiere and Miroir. In the second year, both
objects resulted excluded from the defined classes, being therefore outliers (class 0).

Figure 8. Class distribution in the studied area.

Table 5. Comparison between analytical parameters recorded in the years 2004 and 2005 for the
water sources changing class.

Sources Year Class ECOLI STRF TUR COND AKM Cl SO4 NO3 HRD

ARMENTIERE 2004 1 10.0 8.0 0.2 531.0 22.1 10.0 4.0 26.0 24.5
2005 0 29.0 14.0 0.4 510.0 21.9 10.0 4.0 30.0 25.2

AUGEOIECAP 2004 1 6.0 0.0 0.5 508.0 21.0 10.0 5.0 21.0 23.4
2005 3 1.0 0.0 0.2 529.0 21.5 12.0 6.0 29.0 24.1

BOUILLARDE 2004 3 0.0 0.0 0.3 512.0 22.9 10.0 2.0 15.0 25.5
2005 1 9.0 4.0 0.3 509.0 23.5 9.0 3.0 21.0 24.8

MIROIR 2004 1 15.0 2.0 0.4 497.0 21.3 9.0 5.0 18.0 24.1
2005 0 23.0 8.0 0.8 471.0 20.5 9.0 4.0 20.0 23.3

STPHILSOU 2004 1 5.0 4.0 0.2 549.0 22.3 11.0 6.0 28.0 25.3
2005 3 0.0 0.0 0.2 547.0 23.4 11.0 5.0 22.0 25.8
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The proposed procedure proved to be a useful tool to rapidly highlight any change

occurring at the time about the water quality. It resulted very effective to handle a complex

data matrix carried out from the analysis of a high number of water sources and could be

implemented as a fast and efficient method in routine analysis.

5. Conclusions

Cluster analysis and SIMCA classification were applied to water chemical data from a

large region to verify the water quality during a period. The procedure was applied on 68

analytical objects dealing with the potable water of Paris. CA and PCA provided to select

just nine variables carrying the most useful information and to extract from the complex

data matrix the principal factors causing the samples distribution. The combined use of

these multivariate techniques enabled the classification of water samples into three distinct

classes on the basis of their hydrochemical characteristics. The distribution of the water

sources resulted to be controlled largely by the microbiological parameters. The

classification model by SIMCA algorithm provided then powerful means of monitoring

the quality of water during the time.
The treatment of data demonstrated to be rapid and easy to use and, above all,

independent by a subjective interpretation of the analyst. The method could be used in

water management to identify eventual risks from any water pollution, potentially

dangerous to people’s health or the environment.
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